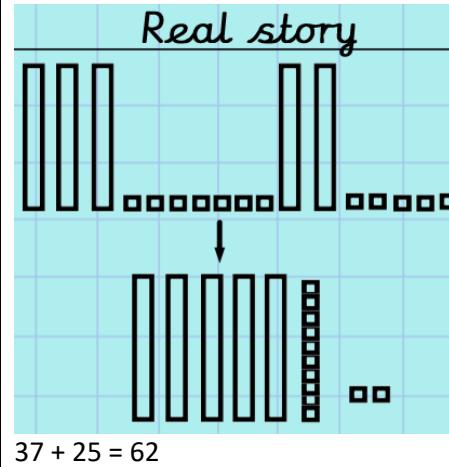
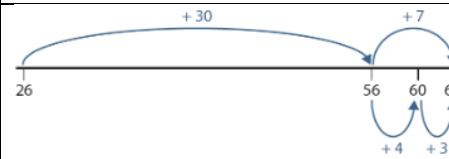
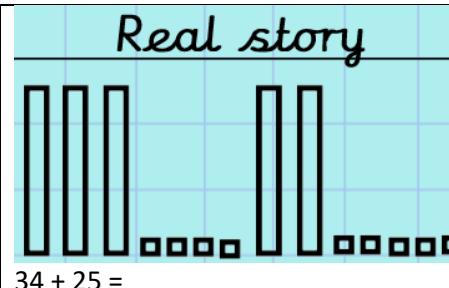
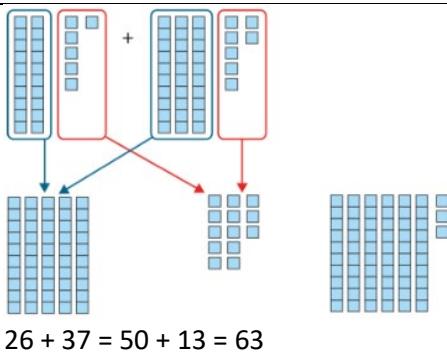
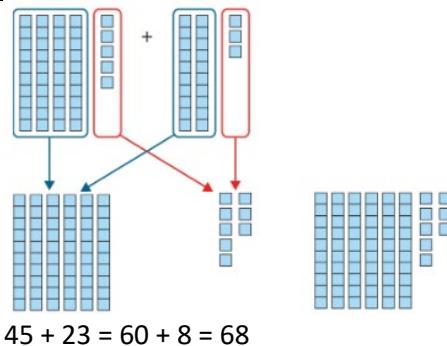

Woodlands Primary School

Calculation Policy

This policy has been adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary. Many variations have been included to provide teachers with a range of tools to support pupils in their grasp of number and calculation. To ensure consistency for pupils, it is important that the mathematical language used in maths lessons reflects the vocabulary used throughout this policy.

Addition

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
<p>__ is the whole, __ is a part, __ is a part.</p> <p>__ = __ plus __ and __ plus __ = __</p> <p>There are __ in total.</p> <p>Year R/1</p>	$3 + 4 = 7 \quad 7 = 3 + 4$ $4 + 3 = 7 \quad 7 = 4 + 3$ $5 + 3 = 8 \quad 8 = 5 + 3$ $3 + 5 = 8 \quad 8 = 3 + 5$	$3 + 2 = 5 \quad 2 + 3 = 5$ $5 = 3 + 2 \quad 5 = 2 + 3$	$2 + 3 = 5 \quad 3 + 2 = 5$ $5 = 2 + 3 \quad 5 = 3 + 2$ <p>Bar model</p>
<p>First... Then... Now...</p> <p>e.g. First there were 4 children on the bus, then 3 children got on. Now there are 7 children on the bus.</p> <p>Year R/1</p>	<p>Role play getting 'on the bus' or use a toy bus.</p>	$4 + 3 = 7$ $2 + 3 = 5$	$4 + 3 = 7$ $4 + 2 = 6$
<p>We can look for pairs of addends which sum to 10.</p> <p>__ plus __ is equal to 10, then 10 plus __ is equal to __.</p> <p>Year 2</p>	$3 + 5 + 7 = 3 + 7 + 5 = 10 + 5 = 15$		






<p>First I partition the __: __ plus __ is equal to __. Then __ plus __ is equal to ten ... and ten plus __ is equal to __.</p> <p>Year 2</p>	$7 + 5 =$ $7 + 3 = 10$ $10 + 2 = 12$	$7 + 5 =$ $7 + 3 = 10$ $10 + 2 = 12$	$7 + 3 = 10$ $10 + 2 = 12$
<p>I know that __ plus __ is equal to __. (single-digit fact) So __ plus __ is equal to __. (related two-digit plus single digit fact) I know that __ plus __ is equal to ten so __ plus __ is equal to __.</p> <p>Year 2</p>	$3 + 6 = 9$ $23 + 6 = 29$ $16 + 4 = 20$	$3 + 6 = 9$ $23 + 6 = 29$	$17 + 3 = 20$
<p>I know that __ plus __ is equal to __. So __ tens plus __ tens is equal to __ tens. __ tens and __ ones, plus __ tens is equal to __ tens and __ ones.</p> <p>Year 2</p>	$40 + 30 = 70 \text{ so } 45 + 30 = 75$	$45 + 30 = 75$	$2 + 3 = 5$ $2 \text{ tens} + 3 \text{ tens} = 5 \text{ tens}$ $20 + 30 = 50$

First I partition the _ into _ and _, and the _ into _ and _.
_ plus _ is equal to _... (addition of the tens)
_ plus _ is equal to _... (addition of the ones)
and _ plus _ is equal to _. (addition of the tens and ones)
So _ plus _ is equal to _. (summary of the overall calculation)

Year 2

First I partition the _ into _ and _, and the _ into _ and _.
_ plus _ is equal to _... (addition of the tens)
_ plus _ is equal to _... (addition of the ones)
and _ plus _ is equal to _. (addition of the tens and ones)
So _ plus _ is equal to _. (summary of the overall calculation)

Year 2

$$\begin{array}{r}
 45 \\
 40 \quad 5 \\
 \end{array}
 \begin{array}{r}
 + \quad 23 \\
 20 \quad 3 \\
 \end{array}
 \begin{array}{l}
 40 + 20 = 60 \\
 5 + 3 = 8 \\
 60 + 8 = 68
 \end{array}$$

or

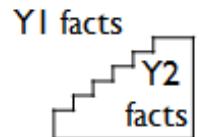
$$\begin{array}{r}
 26 \\
 20 \quad 6 \\
 \end{array}
 \begin{array}{r}
 + \quad 37 \\
 30 \quad 7 \\
 \end{array}
 \begin{array}{l}
 20 + 30 = 50 \\
 6 + 7 = 13 \\
 50 + 13 = 63
 \end{array}
 \quad
 \begin{array}{r}
 26 \\
 20 \quad 6 \\
 \end{array}
 \begin{array}{r}
 + \quad 37 \\
 30 \quad 7 \\
 \end{array}
 \begin{array}{l}
 26 + 30 = 56 \\
 56 + 7 = 63
 \end{array}$$

Addition Facts

Adding 1

Bonds to 10

Adding 10


Bridging/compensating

Adding 2

Adding 0

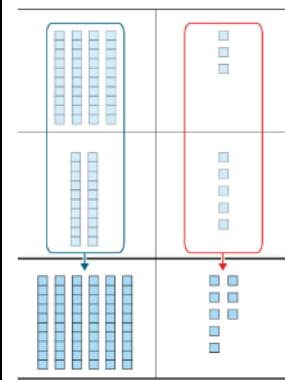
Doubles

Near doubles

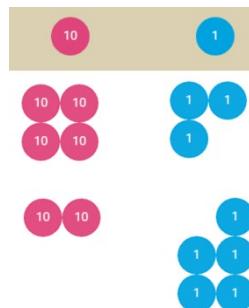
+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
<p>I know that __ plus __ is equal to __. (single-digit addends) So __ tens plus __ tens is equal to __ tens. (multiple-of-ten addends) __ plus __ is equal to one hundred and __.</p> <p>Year 3</p>	<p>tens $70 + 50 = 120$</p>	<p>$7 + 5 = 12$ 7 tens + 5 tens = 12</p> <p>$70 + 50 = 120$ $70 + 30 = 100$ $100 + 20 = 120$</p>	<p>$70 + 50 = 70 + 30 + 20$ = $100 + 20$ = 120</p>
<p>I know that __ plus __ is equal to __. (single-digit addends) So __ tens plus __ tens is equal to __ tens. (multiple-of-ten addends) __ plus __ is equal to one hundred and __.</p> <p>Year 3</p>	<p>$87 + 30 = 110 + 7 = 117$</p>	<p>$87 + 30 = 80 + 30 + 7$ = $110 + 7$ = 117</p>	<p>$87 + 30 = 80 + 7 + 30$ = $110 + 7$ = 117</p>
<p>First we add: __ plus __ is equal to __ then we adjust: __ minus __ is equal to __.</p> <p>Year 3</p>	<p>$35 + 49 = 84$ $34 + 50 = 84$</p>	<p>$520 + 299 =$ $520 + 300 = 820$ $820 - 1 = 819$</p>	<p>$69 + 69 = 138$ $70 + 70 = 140$</p>

We line up the ones; __ ones plus __ ones.
 We line up the tens; __ tens plus __ tens.
 The __ is in the ones column – it represents __ ones. The __ is in the ones column – it represents __ ones.
 __ ones plus __ ones is equal to __ ones.
 The __ is in the tens column – it represents __ tens. The __ is in the tens column – it represents __ tens.
 __ tens plus __ tens is equal to __ tens.


In column addition we start at the right-hand side.

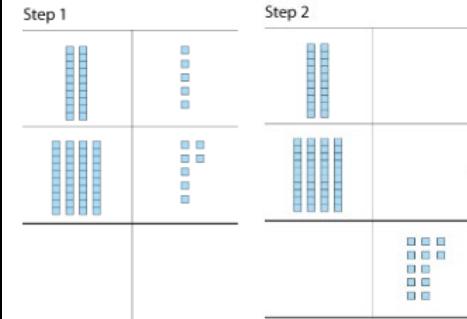
Year 3


If the column sum is equal to ten or more, we must regroup.

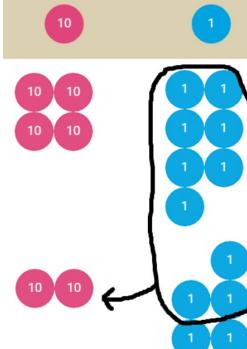
Year 3

Start with two-digit numbers to exemplify lining up the columns.

Children could draw place value counters.



Start with two-digit numbers to exemplify lining up the columns.

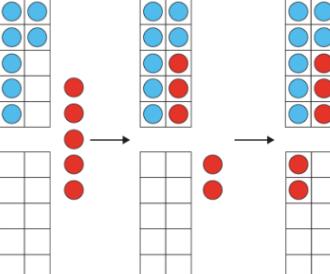
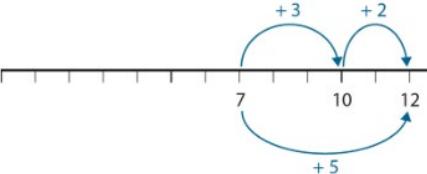
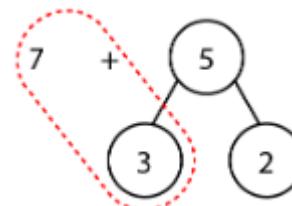
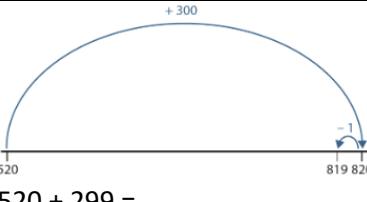
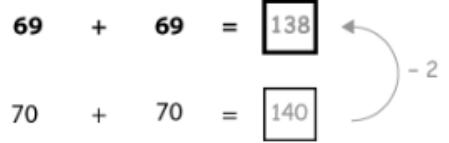

$$\begin{array}{r}
 43 \\
 + 25 \\
 \hline
 \end{array}$$

462
+ 205
—

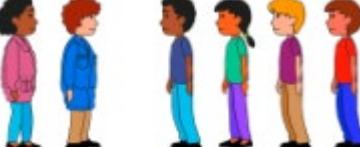
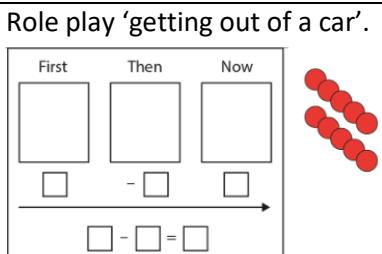
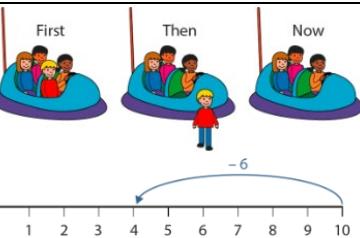
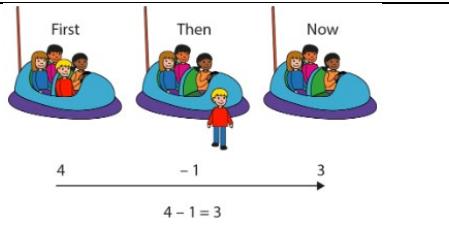
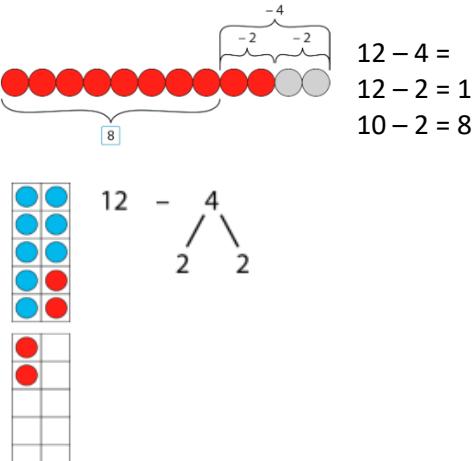
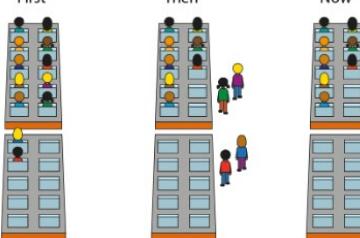
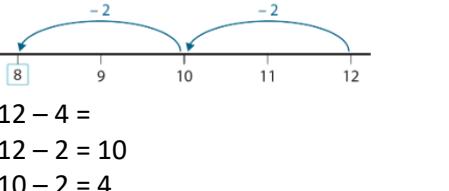
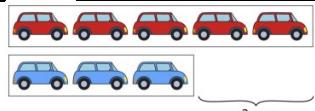
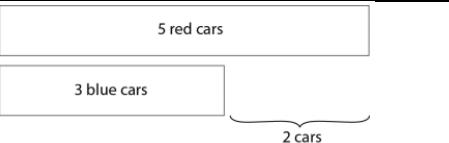
Start with two-digit numbers to exemplify the regrouping.

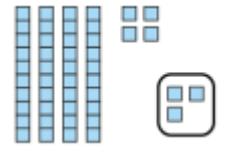
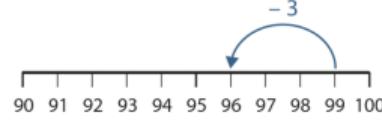
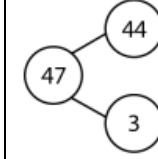
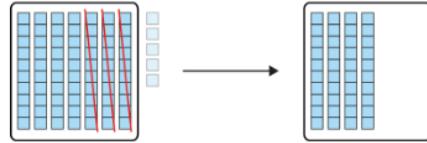
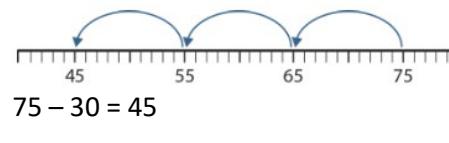
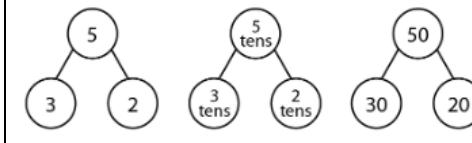
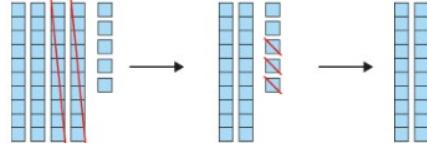
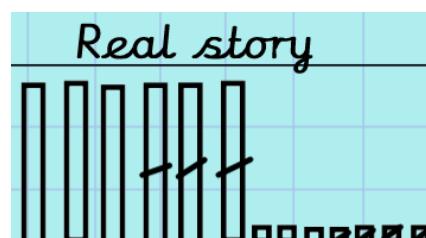
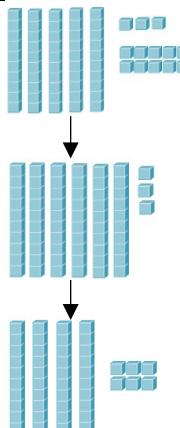
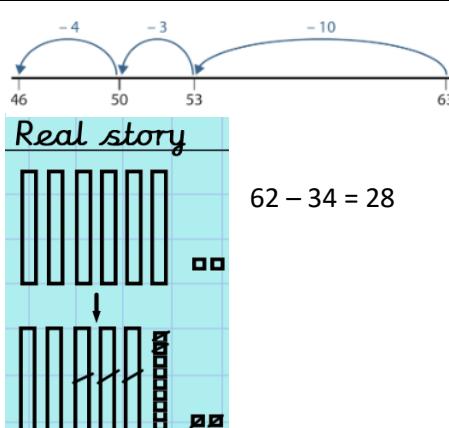
Children could draw place value counters.

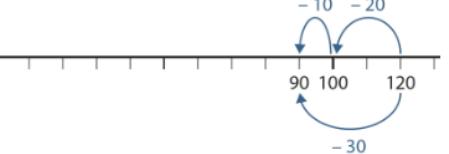
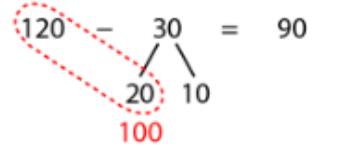
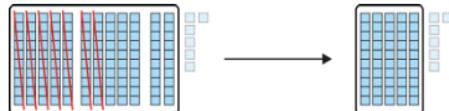
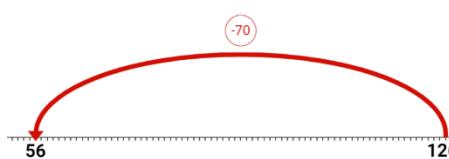
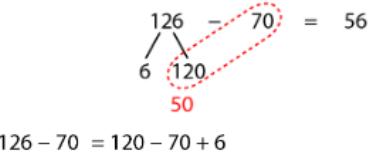
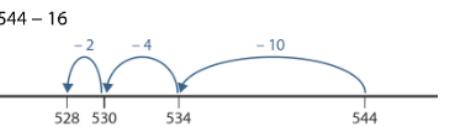
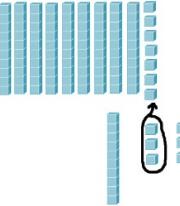
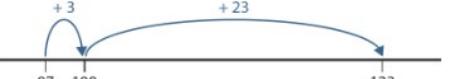
Start with two-digit numbers to exemplify the regrouping.






$$\begin{array}{r}
 25 \\
 + 47 \\
 \hline
 2
 \end{array}
 \quad
 \begin{array}{r}
 25 \\
 + 47 \\
 \hline
 72
 \end{array}$$

$$\begin{array}{r}
 567 \\
 + 233 \\
 \hline
 800
 \end{array}$$










1 1











If the column sum is equal to ten or more, we must regroup. Year 4	See Year 3 examples	See Year 3 examples	$ \begin{array}{r} 6, 5 \ 8 \ 4 \\ + 2, 7 \ 3 \ 9 \\ \hline 9, 3 \ 2 \ 3 \\ 1 \ 1 \ 1 \\ \hline £ 2 \ 4 . 5 \ 5 \\ + £ 1 \ 7 . 8 \ 2 \\ \hline £ 4 \ 2 . 3 \ 7 \\ 1 \ 1 \end{array} $
If the column sum is equal to ten or more, we must regroup. Years 5 and 6	See Year 3 examples	See Year 3 examples	As in Year 4 but using numbers with more than 4 digits

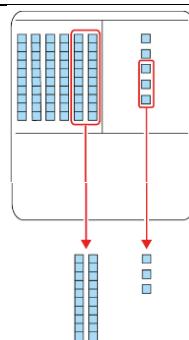








Addition – Key mental strategies for Key Stage 2

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Bridging through a multiple of 10, 100, etc Years 3, 4, 5 and 6	<p> $7 + 5 =$ $7 + 3 = 10$ $10 + 2 = 12$ </p>	<p> $7 + 5 =$ $7 + 3 = 10$ $10 + 2 = 12$ </p>	<p> $7 + 3 = 10$ $10 + 2 = 12$ </p>
Compensating – rounding to the nearest multiple 10, 100, etc and adjusting Years 3, 4, 5 and 6	<p> $35 + 49 = 34 + 50 = 84$ </p>	<p> $520 + 299 =$ $520 + 300 = 820$ $820 - 1 = 819$ </p>	<p> $69 + 69 = 138$ $70 + 70 = 140$ </p>

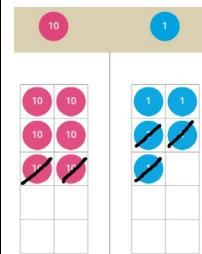
Subtraction

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
<p>__ is the whole, __ is a part, __ is a part.</p> <p>__ = __ minus __ and __ minus __ = __</p> <p>Year R/1</p>	<p>I have 8 counters. 5 counters are red. How many are blue?</p>	<p>There are 6 children. 2 have their coat on. How many do not have their coat on?</p>	<p>There are 8 flowers. 2 are red and the rest are yellow. How many are yellow?</p> $8 - 2 = 6$
<p>First... Then... Now... e.g. First there were 4 children in the car, then 1 child got out. Now there are 3 children in the car.</p> <p>Year R/1</p>	<p>Role play 'getting out of a car'.</p>	$4 - 1 = 3$ $3 = 4 - 1$ $10 - 6 = 4$	$4 - 1 = 3$
<p>We partition the __ into __ and __. First we subtract the __ from __ to get to 10. Then we subtract the remaining __ from 10. We know 10 minus __ is equal to __.</p> <p>Year 2</p>	$12 - 4 =$ $12 - 2 = 10$ $10 - 2 = 8$	<p>First there were 12 children on the ride. Then 4 got off. Now there are 8 children on the ride.</p>	$12 - 4 =$ $12 - 2 = 10$ $10 - 2 = 8$
<p>There are more __ than __. There are fewer __ than __. The difference between __ and __ is __.</p> <p>Year 2</p>	<p>The difference between 2 and 5 is 3. The difference between 5 and 2 is 3.</p>	<p>The difference between 4 and 7 is 3. The difference between 7 and 4 is 3.</p>	<p>5 red cars</p> <p>3 blue cars</p> $5 - 3 = 2$

<p>I know that <u>_</u> minus <u>_</u> is equal to <u>_</u>. (single-digit fact) So <u>_</u> minus <u>_</u> is equal to <u>_</u>. (related two-digit minus single digit fact) I know that ten minus <u>_</u> is equal to <u>_</u> so <u>_</u> minus <u>_</u> is equal to <u>_</u>.</p> <p>Year 2</p>	$7 - 3 = 4$ $47 - 3 = 44$	$9 - 3 = 6$ $99 - 3 = 96$	$47 - 3 = 44$
<p>I know that <u>_</u> minus <u>_</u> is equal to <u>_</u>. So <u>_</u> tens minus <u>_</u> tens is equal to <u>_</u> tens.</p> <p>Year 2</p>	$70 - 30 = 40 \text{ so } 75 - 30 = 45$	$75 - 30 = 45$	$5 - 3 = 2$ $5 \text{ tens} - 3 \text{ tens} = 2 \text{ tens}$ $50 - 30 = 20$
<p>First I subtract the tens, then I subtract the ones.</p> <p>Year 2</p>	$45 - 23 = 22$ $45 - 20 = 25$ $25 - 3 = 22$	$67 - 34 = 33$ <p><i>Real story</i></p>	$45 - 23 = 22$
<p>First I subtract the tens, then I subtract the ones.</p> <p>Year 2</p>	$63 - 17 = 46$	$62 - 34 = 28$	

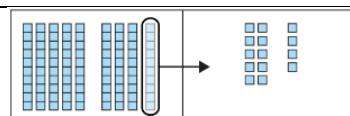

<p>I know that <u>_</u> minus <u>_</u> is equal to <u>_</u>. (bridging ten) So <u>_</u> tens minus <u>_</u> tens is equal to <u>_</u> tens. (bridging ten tens) One hundred and <u>_</u> minus <u>_</u> is equal to <u>_</u>.</p> <p>Year 3</p>	<p>See Year 2 (bridging)</p>	<p>$120 - 30 =$ $120 - 20 = 100$ $100 - 10 = 90$</p>	<p>$120 - 30 =$ $120 - 20 = 100$ $100 - 10 = 90$</p>
<p>I know that <u>_</u> minus <u>_</u> is equal to <u>_</u>. (bridging ten) So <u>_</u> tens minus <u>_</u> tens is equal to <u>_</u> tens. (bridging ten tens) One hundred and <u>_</u> minus <u>_</u> is equal to <u>_</u>.</p> <p>Year 3</p>	<p>$126 - 70 = 56$</p>		<p>$126 - 70 = 120 - 70 + 6$ $= 50 + 6$ $= 56$</p>
<p>We partition the <u>_</u> into <u>_</u> and <u>_</u>. First we subtract the <u>_</u> from <u>_</u> to get to a multiple of 10. Then we subtract the remaining <u>_</u> from the multiple of 10. We know 10 minus <u>_</u> is equal to <u>_</u> so <u>_</u> minus <u>_</u> is equal to <u>_</u>.</p> <p>Year 3</p>			<p>Count back to multiples of 10/100</p>
<p>We partition the <u>_</u> into <u>_</u> and <u>_</u>. First we add the <u>_</u> to <u>_</u> to get to 100. Then we add the remaining <u>_</u> to 100. We know 100 plus <u>_</u> is equal to <u>_</u>.</p> <p>Year 3</p>		<p>$123 - 97 = 26$</p>	<p>Count on to multiples of 10/100</p>

We line up the ones; __ ones plus __ ones.
 We line up the tens; __ tens plus __ tens.
 The __ is in the ones column – it represents __ ones.
 __ ones minus __ ones is equal to __ ones.
 The __ is in the tens column – it represents __ tens.
 __ tens minus __ tens is equal to __ tens.
 In column subtraction we start at the right-hand side.

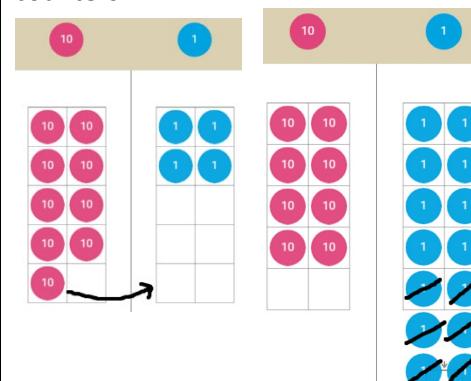

Year 3

If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left.

Year 3

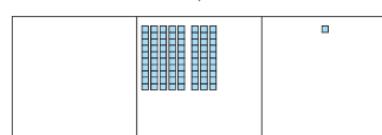
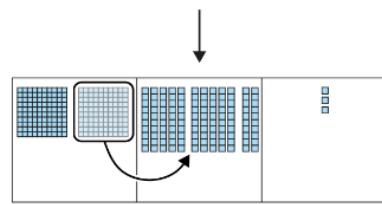
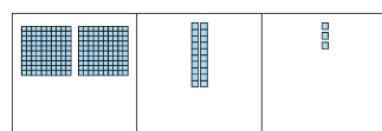
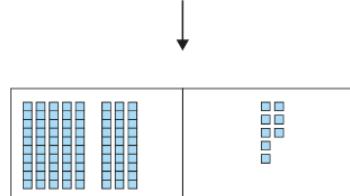


Children could draw place value counters.



$$\begin{array}{r} 65 \\ - 23 \\ \hline 42 \end{array}$$

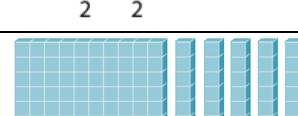
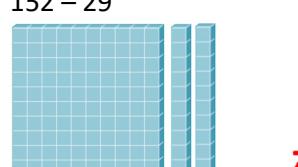
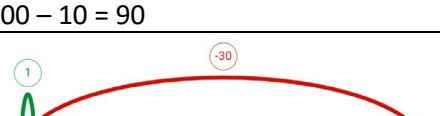
$$\begin{array}{r} 462 \\ - 251 \\ \hline \end{array}$$

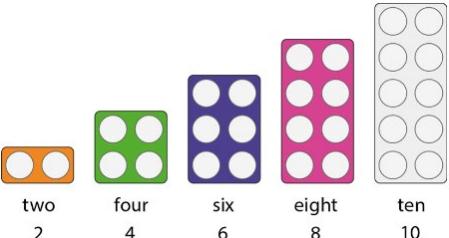
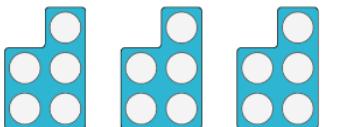
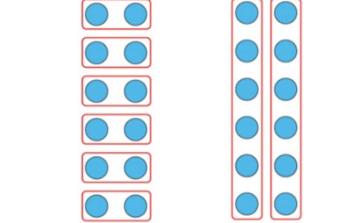
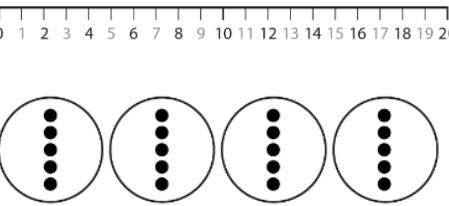
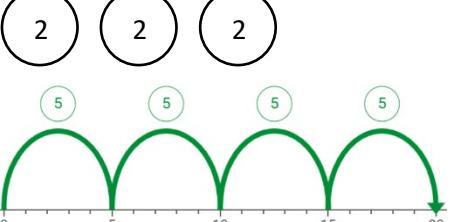
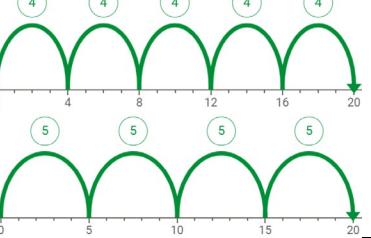
Children could draw place value counters.

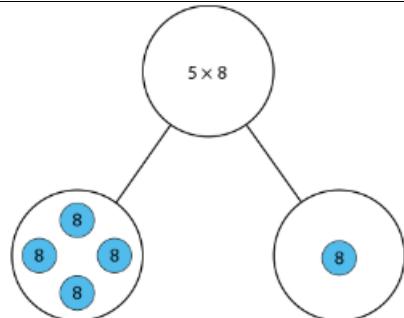
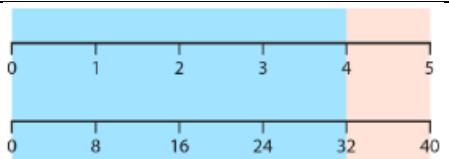
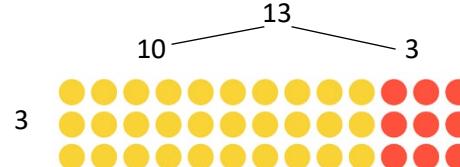
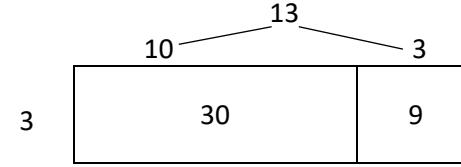
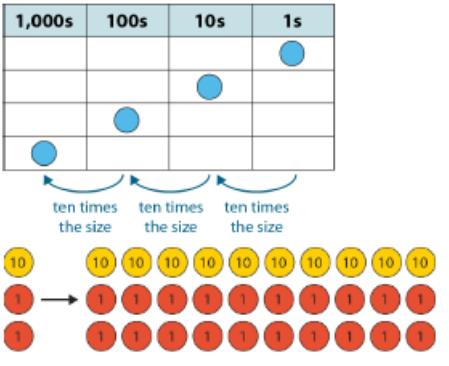
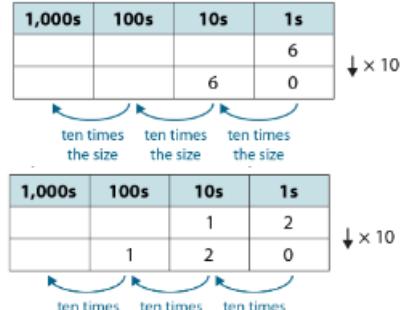
$$\begin{array}{r} 10s \ 1s \\ 8 \ 14 \\ - 9 \ 14 \\ \hline 6 \end{array}$$

$$\begin{array}{r} 10s \ 1s \\ 8 \ 14 \\ - 9 \ 14 \\ \hline 6 \ 8 \end{array}$$

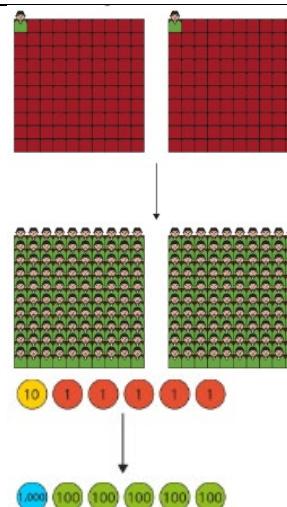
$$\begin{array}{r} 100s \ 10s \ 1s \\ 21123 \\ - 142 \\ \hline \end{array}$$







$$\begin{array}{r} 100s \ 10s \ 1s \\ 21123 \\ - 142 \\ \hline 081 \end{array}$$







<p>If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left.</p> <p>Year 4</p>	<p>See Year 3 examples</p>	<p>See Year 3 examples</p>	$ \begin{array}{r} \cancel{5} \cancel{1}4 \cancel{1}2 \cancel{1}8 \\ - 2, 7 \ 8 \ 9 \\ \hline 3, 7 \ 4 \ 9 \end{array} $ $ \begin{array}{r} \cancel{\pounds} \ 2 \ \cancel{9} \ \cancel{8} \ \cancel{1}4 \ 0 \\ - \pounds \ 1 \ 8 \ . \ 9 \ 4 \\ \hline \pounds \ 1 \ 0 \ . \ 5 \ 6 \end{array} $
<p>If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left.</p> <p>Years 5 and 6</p>	<p>See Year 3 examples</p>	<p>See Year 3 examples</p>	<p>As in Year 4 but using numbers with more than 4 digits</p>

Subtraction – Key mental strategies for Key Stage 2

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Bridging through a multiple of 10, 100, etc Years 3, 4, 5 and 6	$12 - 4 =$ $12 - 2 = 10$ $10 - 2 = 8$ $12 - 4$ $2 \quad 2$	$120 - 30 =$ $120 - 20 = 100$ $100 - 10 = 90$	$120 - 30 =$ $120 - 20 = 100$ $100 - 10 = 90$
Compensating – rounding to the nearest multiple 10, 100, etc and adjusting Years 3, 4, 5 and 6	$152 - 29$		$152 - 30 = 122$ $122 + 1 = 123$


Multiplication

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
<p>One group of two, two groups of two, three groups of 2, ...</p> <p>Ten, twenty, thirty, ...</p> <p>One five, two fives, three fives, ...</p> <p>Year R/1</p> <p>There are __ coins. Each coin has a value of __p. This is __p.</p> <p>Year 1</p> <p>There are __ in each group. There are __ groups. There are __ in a group and __ groups.</p> <p>Year 2</p> <p>Factor times factor is equal to the product. The product is equal to factor times factor.</p> <p>Year 2</p> <p>__ times __ can represent __ in a group and __ groups. It can also represent __ groups of __. Multiplication is commutative.</p> <p>Year 2</p>	<p>two 2 four 4 six 6 eight 8 ten 10</p> <p>Representing each group by one object</p> <p>Unitising equal groups – representing each group by one object</p>		<p>10, 20, 30, ...</p> <p>Five 2p coins = 10p</p> <p>$2 + 2 + 2 + 2 = 8$</p> <p>$2 \times 4 = 8$</p> <p>$5 + 5 + 5 = 15$</p> <p>$5 \times 3 = 15$</p> <p>$2 \times 3 = 6$</p> <p>$6 = 2 \times 3$</p> <p>$2 \times 5 = 5 \times 2$</p>

<p>__ is equal to __ plus __, so __ times __ is equal to __ times __ plus __ times __.</p> <p>__ is equal to __ minus __, so __ times __ is equal to __ times __ minus __ times __.</p> <p>Multiplication is distributive.</p> <p>(NCETM Year 4 unit 2.10)</p> <p>Year 3</p>			$ \begin{aligned} 5 &= 4 + 1 \\ 5 \times 8 &= 4 \times 8 + 1 \times 8 \\ &= 32 + 8 \\ &= 40 \end{aligned} $ $ \begin{aligned} 4 &= 5 - 1 \\ 4 \times 8 &= 5 \times 8 - 1 \times 8 \\ &= 40 - 8 \\ &= 32 \end{aligned} $
<p>__ is equal to __ plus __, so __ times __ is equal to __ times __ plus __ times __.</p> <p>__ is equal to __ minus __, so __ times __ is equal to __ times __ minus __ times __.</p> <p>Multiplication is distributive.</p> <p>(NCETM Year 4 unit 2.10)</p> <p>Year 3</p>			$ \begin{aligned} 3 \times 13 &= 3 \times 10 + 3 \times 3 \\ &= 30 + 9 \\ &= 39 \end{aligned} $
<p>To multiply a whole number by 10, place a zero after the final digit of that number.</p> <p>Year 4</p>			$ \begin{aligned} 6 \times 10 &= 60 \\ 12 \times 10 &= 120 \end{aligned} $

All multiples of 100 have both a tens and ones digit of 0.
When a number is multiplied by 100, the product is a multiple of 100.

Year 4

1,000s	100s	10s	1s
		6	0


$\downarrow \times 100$

100 times the size

$2 \times 100 = 200$
There are 100 times as many people as before.

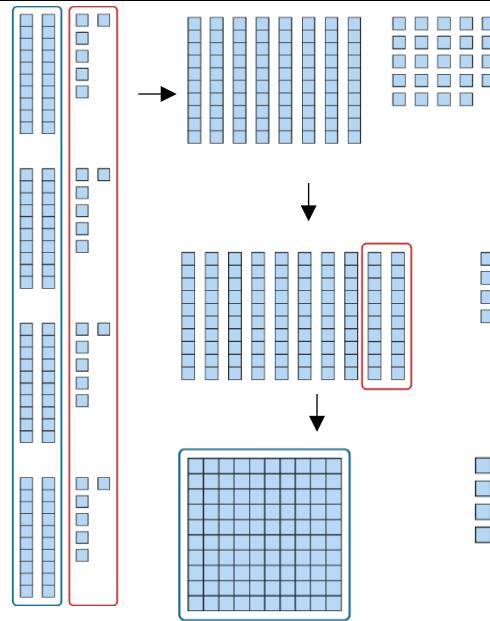
If one factor is made ten times the size, the product will be ten times the size.

Year 4

1,000s	100s	10s	1s
1	5	1	5
1	5	0	0

$\downarrow \times 100$

100 times the size


100 times the size

$$15 \times 100 = 1500$$

If there are ten or more ones, we must regroup the ones into tens and ones.
If there are ten or more tens, we must regroup the tens into hundreds and tens.

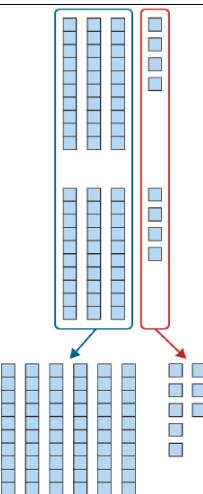
Multiplication is distributive.

Year 4

$$\begin{array}{r}
 2 \times \textcircled{3} = \textcircled{6} \\
 \times 10 \quad \downarrow \times 10 \\
 2 \times \textcircled{30} = \textcircled{60}
 \end{array}$$

$$4 \times 3 = 12 \text{ so } 4 \times 30 = 120$$

$$\begin{array}{r}
 84 \times 6 = 504 \\
 80 \quad 4
 \end{array}$$


$$\begin{array}{r}
 80 \times 6 = 480 \\
 4 \times 6 = 24 \\
 480 + 24 = 504
 \end{array}$$

$$\begin{array}{r}
 84 \times 6 = 80 \times 6 + 4 \times 6 \\
 = 480 + 24 \\
 = 504
 \end{array}$$

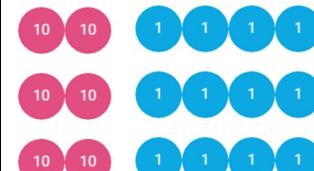
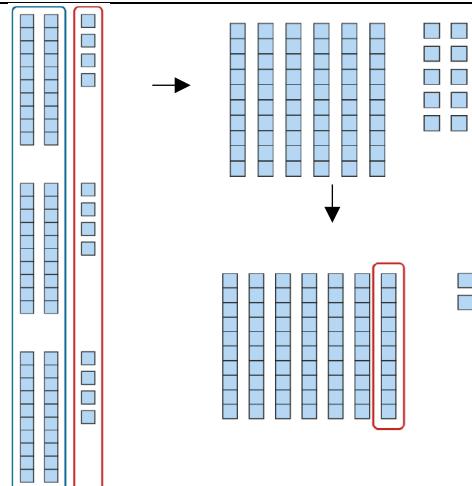
We work from the least significant digit, on the right, to the most significant digit, on the left.

Multiplication is distributive.

Year 4

$$34 \times 2 = 60 + 8 = 68$$

10s	1s	
3	4	
x 2		
		8
		6
		0
		6
		8



2 × 4 ones = 8 ones
2 × 3 tens = 6 tens

2	1	
x 4		
		8
		4

If there are ten or more ones, we must regroup the ones into tens and ones.
If there are ten or more tens, we must regroup the tens into hundreds and tens.

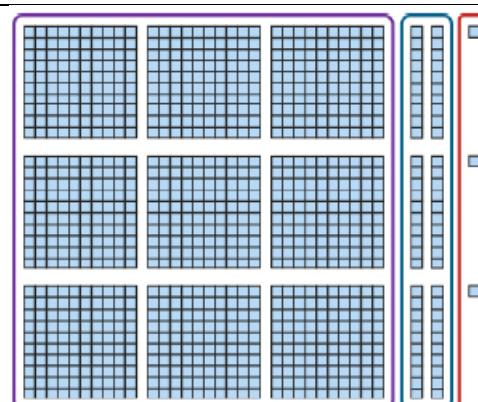
Multiplication is distributive.

Year 4

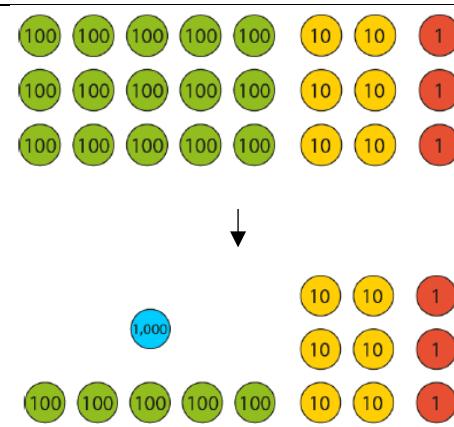
$$24 \times 3 = 60 + 12 = 72$$

10s	1s	
2	4	
x 3		
		1
		2
		6
		0
		7
		2

3 × 4 ones = 12 ones = 1 ten + 2 ones
3 × 2 tens = 6 tens


1	8	
x 5		
		9
		0
		4

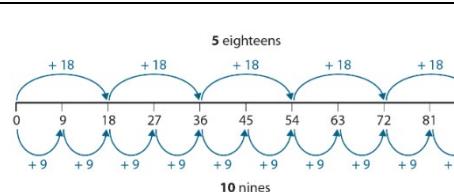
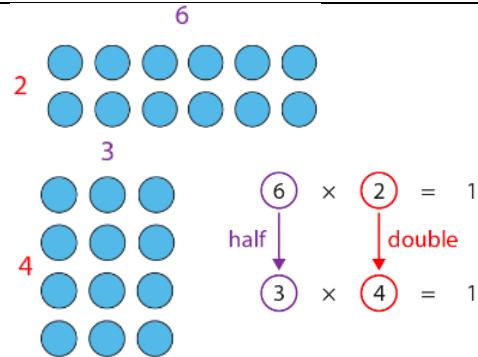
3	8	
x 4		
		1
		5
		2
		3


If there are ten or more ones, we must regroup the ones into tens and ones.
 If there are ten or more tens, we must regroup the tens into hundreds and tens.
 If there are ten or more hundreds, we must regroup the hundreds into thousands and hundred.

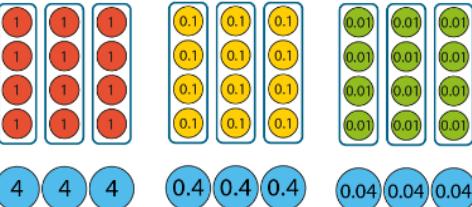
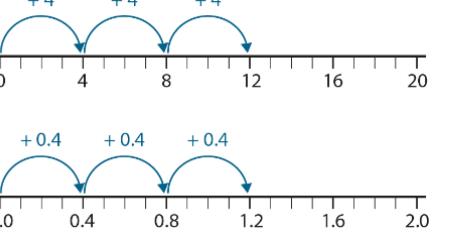
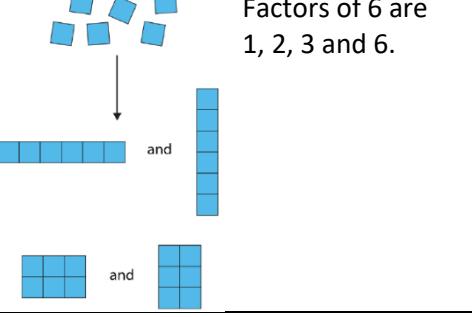
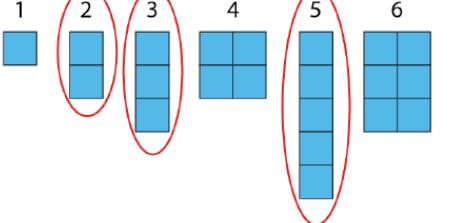
Multiplication is distributive.

Year 4

$$321 \times 3 = 963$$

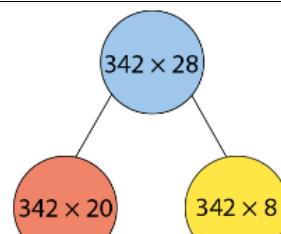
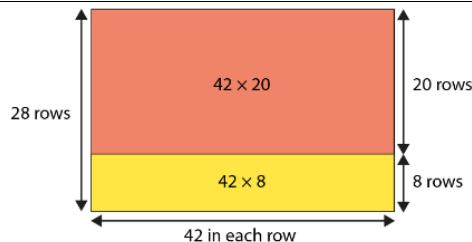


$$521 \times 3 = 1000 + 500 + 60 + 3 = 1563$$

100s	10s	1s	
3	2	1	
		3	$3 \times 1 \text{ ones} = 3 \text{ ones}$
	6	0	$3 \times 2 \text{ tens} = 6 \text{ tens}$
9	0	0	$3 \times 3 \text{ hundreds} = 9 \text{ hundreds}$
9	6	3	
3	2	1	
		3	
9	6	3	
1,000s	100s	10s	1s
5	2	1	
		3	
	6	0	
1	5	0	0
1	5	6	3
3	6	7	
		4	
1	4	6	8
2	2		





If there is a multiplicative increase in one factor and a multiplicative decrease in the other, the product remains the same.

If I multiply one factor by __, I must divide the other factor by __ for the product to remain the same.

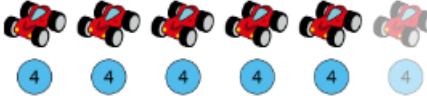
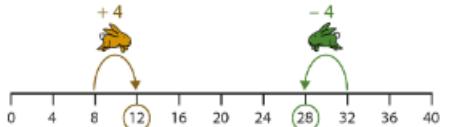
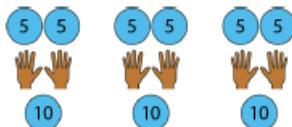
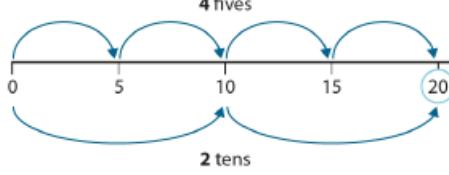
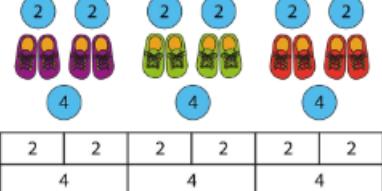
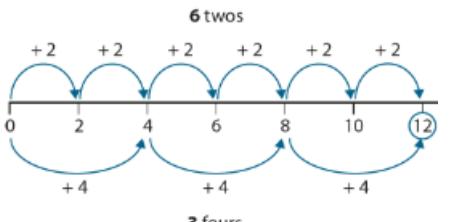
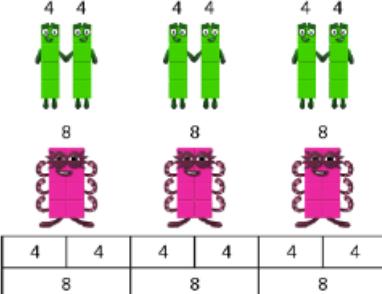
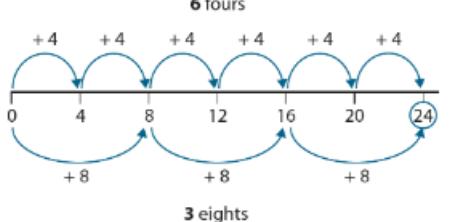
Year 5 and 6



$$\begin{array}{r}
 2 \times 9 = 18 \\
 \times 3 \downarrow \quad \downarrow \div 3 \\
 6 \times 3 = 18
 \end{array}$$

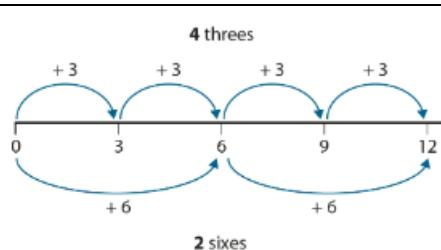
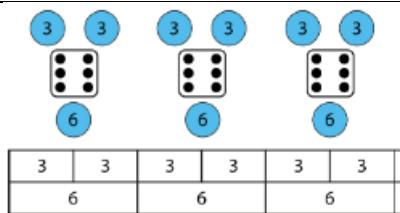
<p>If one factor is made one tenth of the size, the product will be one tenth of the size.</p> <p>If one factor is made one hundredth of the size, the product will be one hundredth of the size.</p> <p>I move the digits of the number I am multiplying __ places to the left until I get a whole number; then I multiply; then I move the digits of the product __ places to the right.</p>	$4 \times 3 = 12$ $0.4 \times 3 = 1.2$ $0.04 \times 3 = 0.12$		$ \begin{array}{r} 4 & 5 & 6 \\ \times & & 4 \\ \hline 1 & 8 & 2 & 4 \\ 2 & 2 \end{array} $ $ \begin{array}{r} 4 & . & 5 & 6 \\ \times & & & 4 \\ \hline 1 & 8 & . & 2 & 4 \\ 2 & 2 \end{array} $
<p>Year 5</p> <p>Numbers that have more than two factors are composite numbers.</p> <p>Year 5</p>	<p>Factors of 6 are 1, 2, 3 and 6.</p>	<p>Factor bugs</p>	<p>Factors of 6 are 1, 2, 3 and 6.</p>
<p>Numbers that have only two factors are prime numbers.</p> <p>Year 5</p>			<p>17 is a prime number because its only factors are 1 and 17.</p>

To multiply two two-digit numbers, first multiply by the ones, then multiply by the tens, then add them together.

To multiply a three-digit number by a two-digit number, first multiply by the ones, then multiply by the tens, then add them together.









Year 6

$$\begin{array}{r} \begin{array}{r} 100s \ 10s \ 1s \\ \hline 2 \ 7 \\ \hline 2 \ 3 \\ \hline 8 \ 1 \end{array} \\ \times \begin{array}{r} 27 \times 3 \\ 27 \times 20 \\ \hline 540 \\ 621 \\ \hline 8736 \end{array} \end{array}$$

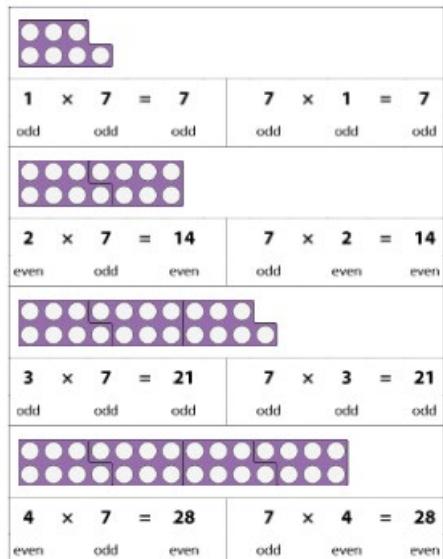


$$\begin{array}{r} \begin{array}{r} 3 \ 1 \ 2 \\ \times \ 2 \ 8 \\ \hline 2496 \\ 6240 \\ \hline 8736 \end{array} \end{array}$$

Multiplication – Key mental strategies for Key Stage 2

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Adjacent multiples of __ have a difference of __. Year 3 onwards			$4 \times 6 = 4 \times 5 + 4$ $4 \times 9 = 4 \times 10 - 4$
Products in the 10 times table are double the products in the 5 times table. Products in the 5 times table are half of the products in the 10 times table. (NCETM Year 2 unit 2.5) Year 3 onwards			$5 \times 4 = 10 \times 2$
Products in the 4 times table are double the products in the 2 times table. Products in the 2 times table are half of the products in the 4 times table. Year 3 onwards			$2 \times 6 = 4 \times 3$
Products in the 8 times table are double the products in the 4 times table. Products in the 4 times table are half of the products in the 8 times table. Year 3 onwards			$4 \times 6 = 8 \times 3$

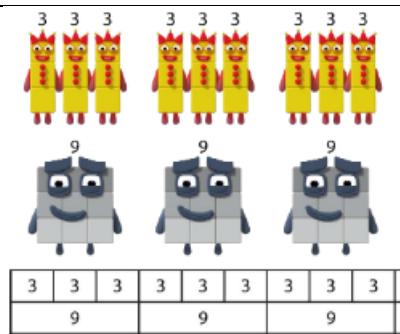
Products in the 6 times table are double the products in the 3 times table.
Products in the 3 times table are half of the products in the 6 times table.

Year 3 onwards

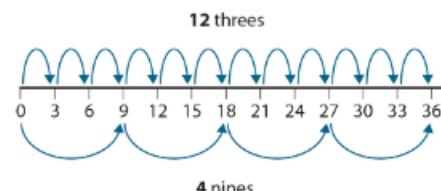


$$3 \times 4 = 6 \times 2$$

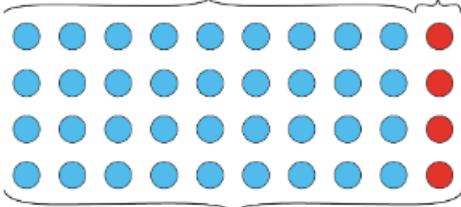
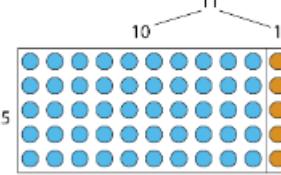
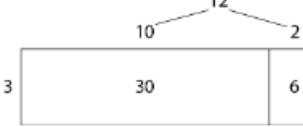
When both factors are odd, the product is odd.
When one factor is odd and the other factor is even, the product is even.


(NCETM Year 3 unit 2.9)

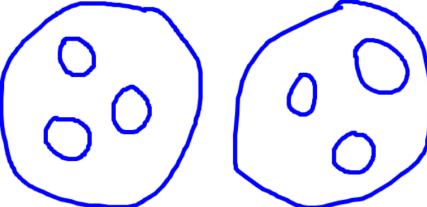
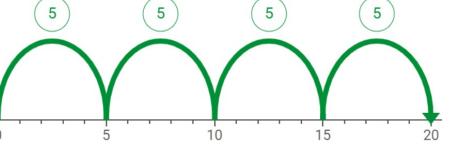
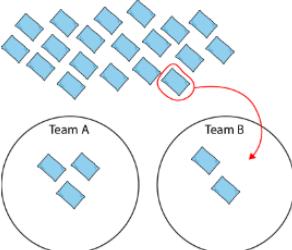
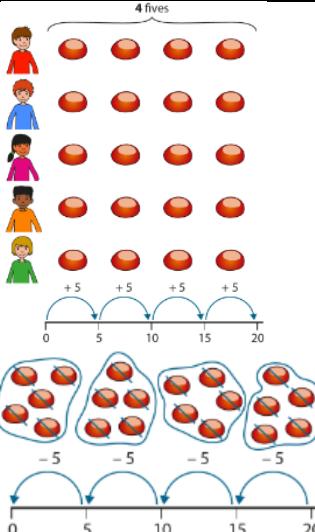
Year 3 onwards

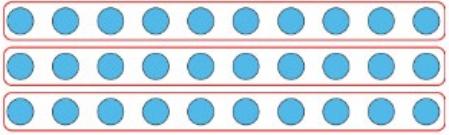
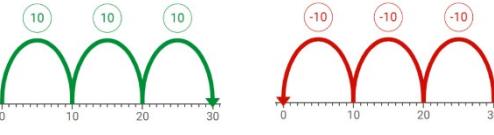
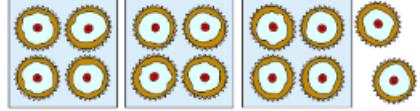
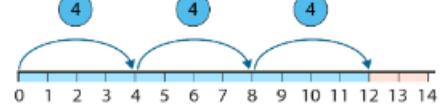
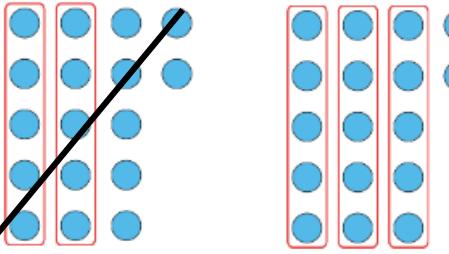
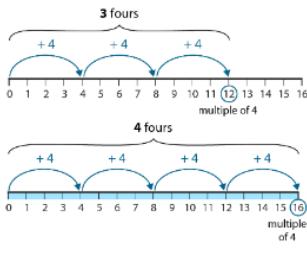
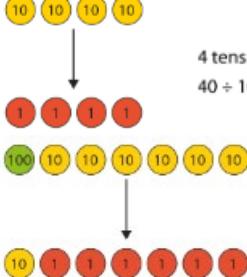
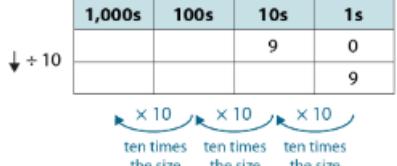

odd x odd = odd
odd x even = even
even x odd = even
even x even = even

Products in the 9 times table are triple the products in the 3 times table.

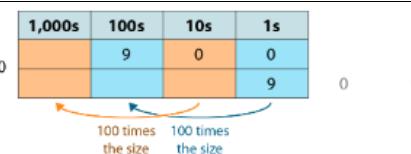
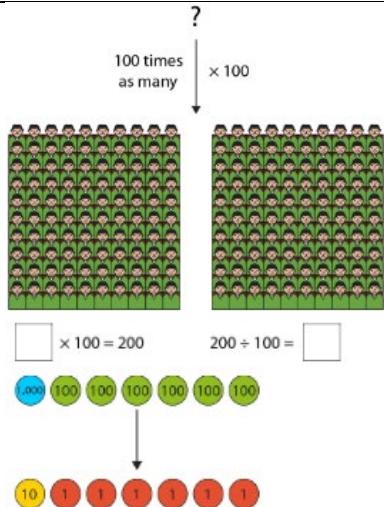
$$9 \times 4$$





$$1 \times 4$$

$$3 \times 12 = 9 \times 4$$

<p>Products in the 10 times table can be used to find products in the 9 times table. (NCETM Year 3 unit 2.8) Year 4 onwards</p>	<p>10 x 4</p>		$9 \times 4 = 10 \times 4 - 1 \times 4$
<p>Products in the 10 times table can be used to find products in the 11 times table and 12 times table. Year 4 onwards</p>	<p>10 11 5</p>	<p>10 12 3 30 6</p>	$12 \times 3 = 10 \times 3 + 2 \times 3$ $= 30 + 6$ $= 36$

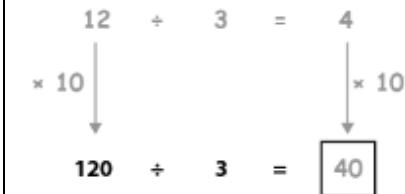
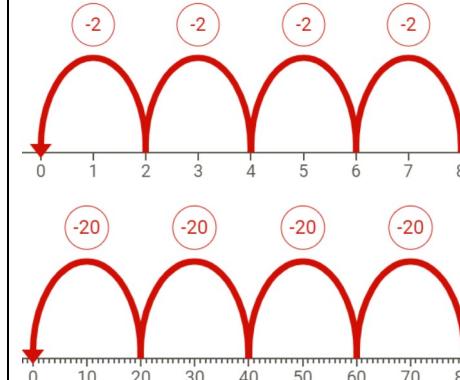
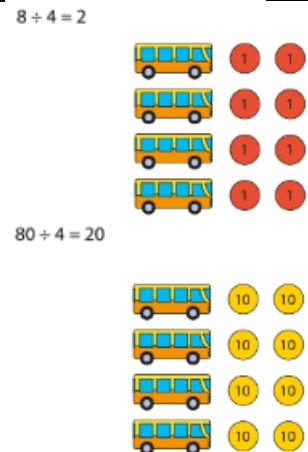


Division

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
<p>One group of two, two groups of two, three groups of 2, ...</p> <p>Ten, twenty, thirty, ...</p> <p>One five, two fives, three fives, ...</p> <p>Year R/1</p> <p>The ___ costs ___p. Each coin has a value of ___p. So I need ___ coins.</p>			<p>6 biscuits shared between 2 children gives 3 biscuits each.</p>
<p>Year 1</p> <p>___ is divided into groups of ___. There are ___ groups.</p> <p>We can skip count using the divisor to find the quotient.</p> <p>Year 2</p> <p>___ divided between ___ is equal to ___ each.</p> <p>We can skip count using the divisor to find the quotient.</p>			<p>Five 2p coins = 10p</p> <p>$5 + 5 + 5 = 15$ $15 \div 5 = 3$</p>
<p>Year 2</p>		<p>One 5 is 1 each. That's 5. Two 5s is 2 each. That's 10. $10 \div 5 = 2$</p>	

<p>Ten times <u> </u> is equal to <u> </u> so <u> </u> divided into groups of ten is <u> </u>. If the divisor is <u> </u>, we can use the <u> </u> times table to find the quotient.</p> <p>Year 2</p>	<p>30 represents the total number of counters. 10 represents the number in each group. 3 represents the number of groups.</p>		$10 \times 3 = 30$ $3 \times 10 = 30$ $30 \div 10 = 3$
<p><u> </u> is divided into groups of <u> </u>. There are <u> </u> groups and a remainder of <u> </u>.</p> <p>(NCETM Year 4 unit 2.12)</p>			$14 = 4 \times 3 + 2$ $14 \div 4 = 3 \text{ r } 2$
<p><u> </u> is a multiple of <u> </u> so when it is divided into groups of <u> </u>, there is no remainder.</p> <p>The remainder is always less than the divisor.</p> <p>(NCETM Year 4 unit 2.12)</p> <p>Year 3</p>			<p>$17 \div 5 = 2 \text{ r } 7$ is incorrect because 7 is greater than 5.</p> <p>$17 \div 5 = 3 \text{ r } 2$</p>
<p>To divide a multiple of ten by 10, remove the zero from the ones place.</p> <p>Year 4</p>			$90 \div 10 = 9$ $150 \div 10 = 15$

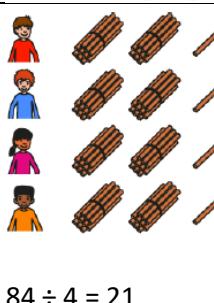
To divide a multiple of 100 by 100, remove two zeros (from the tens and ones places).

Year 4

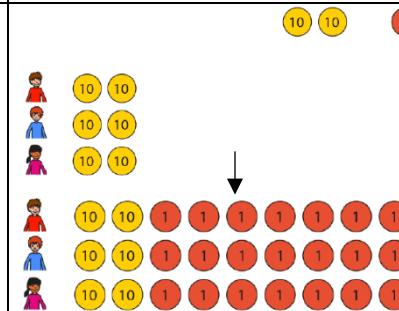




$$900 \div 100 = 9$$

$$1500 \div 100 = 15$$


If the dividend is made ten times the size, the quotient will be ten times the size.

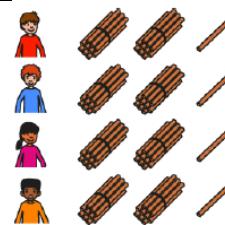
Year 4



If dividing the tens gives a remainder of one or more tens, we must exchange the remaining tens for ones.

Year 4

$$84 \div 4 = 21$$



$$\begin{array}{rcl} 8 \text{ tens} & \div & 4 = 2 \text{ tens} \\ 4 \text{ ones} & \div & 4 = 1 \text{ one} \\ 84 & \div & 4 = 21 \end{array}$$

$$\begin{array}{rcl} 6 \text{ tens} & \div & 3 = 2 \text{ tens} \\ 21 \text{ ones} & \div & 3 = 7 \text{ ones} \\ 81 & \div & 3 = 27 \end{array}$$

If dividing the tens gives a remainder of one or more tens, we must exchange the remaining tens for ones.

Year 4

$$4 \overline{) 2 \ 1}$$

8 tens \div 4 = 2 tens
4 ones \div 4 = 1 one

$$72 \div 3 = 24$$

$$3 \overline{) 2 \ 1}$$

7 tens \div 3 = 2 tens r 1
1 one

$$3 \overline{) 2 \ 4}$$

7 tens \div 3 = 2 tens r 1
4 ones

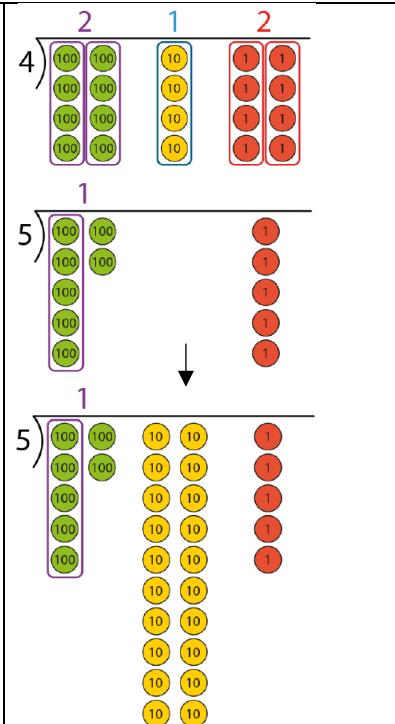
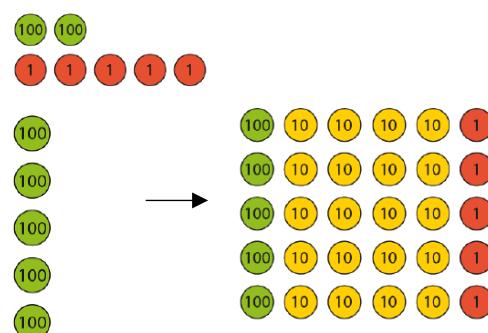
$$73 \div 3 = 24 \text{ r } 1$$

$$3 \overline{) 2 \ 4 \ r1}$$

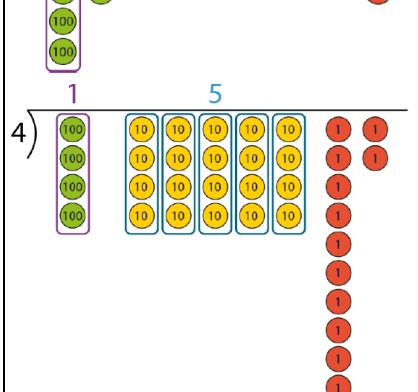
7 tens \div 3 = 2 tens r 1
4 ones
1 one

$$10s \ 1s$$

$$4 \overline{) 2 \ 1}$$



$$4 \overline{) 8 \ 4}$$

$$3 \overline{) 2 \ 4}$$

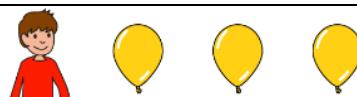

$$3 \overline{) 7 \ 13}$$

If dividing the hundreds gives a remainder of one or more hundreds, we must exchange the remaining hundreds for tens.

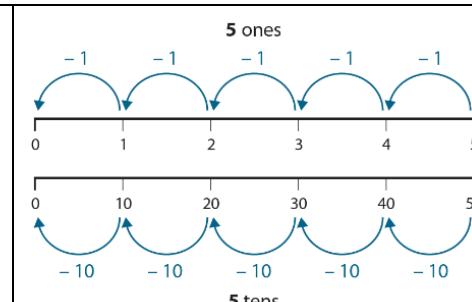
Year 4

$$612 \div 4 = 153$$

$$4) \overline{212}$$


$$5) \overline{7205}$$

$$4) \overline{153}$$

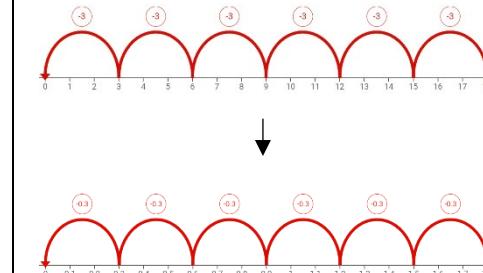

If there is a multiplicative change to the dividend factor and a corresponding change to the divisor, the quotient remains the same.

If I multiply the dividend by __, I must multiply the divisor by __ for the quotient to remain the same.

Year 5 and 6

$$\begin{array}{r} 3 \\ \times 3 \\ \hline 9 \end{array} \quad \begin{array}{r} 1 \\ \times 3 \\ \hline 3 \end{array} = 3$$

$$\begin{array}{r} 40 \\ \times 10 \\ \hline 400 \end{array} \quad \begin{array}{r} 10 \\ \times 10 \\ \hline 100 \end{array} = 4$$

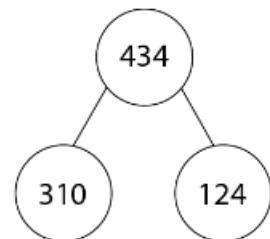

If the dividend is made one tenth of the size, the quotient will be one tenth of the size.

If the dividend is made one hundredth of the size, the quotient will be one hundredth of the size.

I move the digits of the dividend __ places to the left until I get a whole number; then I divide; then I move the digits of the quotient __ places to the right.

Year 5 onwards

$$\begin{array}{r} 1 \quad 2 \\ \hline 2 \end{array} \quad \begin{array}{r} 1 \quad 2 \\ \hline 2 \end{array}$$


$$\begin{array}{r} 0.85 \\ \times 100 \\ \hline 85 \end{array} \quad \begin{array}{r} 85 \\ \div 5 \\ \hline 17 \end{array} \quad \begin{array}{r} 0.17 \\ \div 100 \\ \hline 0.0017 \end{array}$$

$$\begin{array}{r} 0 \quad 5 \quad 1 \\ 5 \end{array} \rightarrow \begin{array}{r} 0 \quad 5 \quad . \quad 1 \\ 5 \end{array}$$

Any two-, three- or four-digit dividend can be divided by a two-digit divisor using skip-counting in multiples of the divisor, or by short division or long division.

Year 6

Partitioning

$$310 \div 31 = 10$$

$$124 \div 31 = 4$$

$$434 \div 31 = 14$$

Short division

$$\begin{array}{r} 0 \ 1 \ 4 \\ 31 \overline{)4 \ 4 \ 3 \ 12 \ 4} \\ \end{array}$$

$$\begin{array}{r} 0 \ 1 \ 4 \\ 31 \overline{)4 \ 3 \ 4} \\ 3 \ 1 \\ \hline 1 \ 2 \ 4 \\ 1 \ 2 \ 4 \\ \hline 0 \end{array}$$

Long division

$$(1 \text{ ten} \times 31 = 31 \text{ tens})$$

$$(4 \text{ ones} \times 31 = 124 \text{ ones})$$

Where there is a remainder, the result can be expressed as a whole-number quotient with a whole-number remainder, a whole-number quotient with a proper-fraction remainder, or as a decimal-fraction quotient.

Year 6

$$354 \div 15 = ?$$

$$\begin{array}{r} 2 \ 3 \ r \ 9 \\ 15 \overline{)3 \ 5 \ 4} \\ 3 \ 0 \\ \hline 5 \ 4 \\ 4 \ 5 \\ \hline 9 \end{array}$$

$$\begin{array}{r} 2 \ 3 \ \frac{9}{15} \\ 15 \overline{)3 \ 5 \ 4} \\ 3 \ 0 \\ \hline 5 \ 4 \\ 4 \ 5 \\ \hline 9 \end{array}$$

$$\begin{array}{r} 2 \ 3 \ . \ 6 \\ 15 \overline{)3 \ 5 \ 4 \ . \ 0} \\ 3 \ 0 \\ \hline 5 \ 4 \\ 4 \ 5 \\ \hline 9 \ 0 \\ 9 \ 0 \\ \hline 0 \end{array}$$

$$\text{So, } 354 \div 15 = 23 \text{ r } 9$$

$$\frac{9}{15} = \frac{3}{5}$$

$$\text{So, } 354 \div 15 = 23\frac{3}{5}$$

$$\text{So, } 354 \div 15 = 23.6$$